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Abstract
A transfer matrix method is developed for optical calculations of non-interacting graphene
layers. Within the framework of this method, optical properties such as reflection,
transmission and absorption for single-, double- and multi-layer graphene are studied. We also
apply the method to structures consisting of periodically arranged graphene layers, revealing
well-defined photonic band structures and even photonic bandgaps. Finally, we discuss
graphene plasmons and introduce a simple way to tune the plasmon dispersion.

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene is a flat monolayer of graphite with carbon atoms
closely packed in a two-dimensional honeycomb lattice.
A hallmark of graphene is the existence of Dirac cones
in the electronic band structure, resulting in extraordinary
structural and electronic properties with great potential for
nanoelectronics [1–3].

In addition to outstanding electrical, mechanical and
chemical properties, graphene has interesting optical re-
sponse. One of the striking optical properties of graphene
is that its reflectance, transmittance and absorbance are
determined by the fine structure constant [4, 5]. Despite being
only one-atomic-layer thick with negligible reflection, a single
free-standing graphene layer shows significant absorbance,
universally about 2.2% in a spectral range from near-infrared
to visible [4, 6, 7]. In the infrared regime, graphene
absorption can be altered by applying gate voltages [8, 9].
For few-layer graphene, the optical absorption is proportional
to the number of layers [10], leading to a visual image
contrast which can be used practically to identify the number
of graphene layers on a substrate. The highly transparent
and outstanding electrical properties of graphene make it
attractive for transparent electrodes [11, 12]. The broadband
absorption implies that graphene has potential as an active
medium for use in broadband photodetectors [13, 14],
ultra-fast lasers [15] and optical modulation [16]. By applying

an external magnetic field, giant Faraday rotations can be
generated in graphene [17, 18].

In doped or gated graphene, collective excitations—
plasmons—exist with interesting optical features such as deep
subwavelength and high confinement of optical fields [19–25],
similar to surface plasmons in metal surfaces [26–28]. As a
result, graphene may serve as a one-atom-thick platform for
infrared and terahertz metamaterials [29, 30]. A number of
photonic devices such as waveguides, splitters and combiners
and superlenses could be envisioned [30, 31]. Numerical
simulations suggest that periodically patterned arrays of
doped graphene nanodisks may completely absorb infrared
light at certain resonant wavelengths [32]; this was soon
confirmed experimentally [33]. These interesting optical
properties of graphene may also offer potential applications
in photonics [34].

In this paper, we develop a transfer matrix method
to study optical properties in non-interacting graphene
layers. This paper is organized as follows. In section 2,
we introduce the transfer matrix method to study the
propagation of light through graphene layers, together with
the optical conductivity of graphene used in our calculations.
In sections 3–5, we apply the transfer matrix method to the
study of optics in graphene layers. Specifically, in section 3
we discuss reflection, transmission and absorption in single-,
double- and multi-layer graphene. In section 4, we discuss
photonic band structures in periodical graphene layers. In
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Figure 1. (a) A single graphene layer surrounded by two dielectrics
with dielectric constants ε1 and ε2. The graphene layer is
characterized by a conductivity σ . Red and purple arrows indicate
incoming and outgoing light, respectively. (b) A stack of N
graphene layers of conductivity σi (i = 1, 2, . . . ,N) which are
separated by different dielectrics with dielectric constants
εi (i = 1, 2, . . . ,N + 1). The spacing between two adjacent
graphene layers is denoted by di,i+1 (i = 1, 2, . . . ,N − 1).

section 5, we discuss plasmons in graphene. Finally, we
present our summary in section 6.

2. General formulation

The transfer matrix method is a powerful tool in the analysis
of light propagation through layered dielectric media [35, 36].
The central idea lies in the fact that electric or magnetic fields
in one position can be related to those in other positions
through a transfer matrix. Within the framework of the
transfer matrix method, there are two kinds of matrices: one
is the transmission matrix that connects the fields across an
interface and the other is the propagation matrix that connects
the fields propagating over a distance within a homogeneous
medium.

2.1. Transmission matrix

We first consider the propagation of light across an interface
formed by a graphene layer that separates two dielectrics
with dielectric constants ε1 and ε2, as shown schematically
in figure 1(a). The graphene layer has an optical conductivity
σ lying at z = 0. Light is assumed to be polarized in the y
direction and to propagate in the z direction. For the structures
considered, the s and p polarizations can be decoupled. As a
result, we can deal with the s and p polarizations separately.

For p polarization, the magnetic field is polarized along
the y direction and can be written as the form

H1y = (a1eik1zz
+ b1e−ik1zz)eik1xx, z < 0, (1)

H2y = (a2eik2zz
+ b2e−ik2zz)eik2xx, z > 0. (2)

Here, ai and bi (i = 1, 2) are the field coefficients, kix (kiz) is
the x (z) component of the wavevector ki =

√
εiω/c, where ω

is the angular frequency and c is the speed of light in vacuum.
The first (second) term in the parentheses on the right-hand
side represents waves propagating along the z (−z) direction.
From Snell’s law, we will immediately have k1x = k2x.

The electric and magnetic fields at the interface can be
related by the following boundary conditions [37]:

n× (E2 − E1)|z=0 = 0, (3)

n× (H2 −H1)|z=0 = J, (4)

where n is the unit surface normal and J is the surface current
density of the graphene layer. Applying the above boundary
conditions at z = 0, we will have

k1z

ε1
(a1 − b1)−

k2z

ε2
(a2 − b2) = 0, (5)

(a1 + b1)− (a2 + b2) = Jx. (6)

Note that J can be obtained from Ohm’s law, namely

Jx = σEx|z=0 =
σk2z

ε0ε2ω
(a2 − b2), (7)

where ε0 is the vacuum permittivity. Combining equa-
tions (5)–(7), the coefficients a1 and b1 can be related to a2
and b2 by a 2× 2 transmission matrix D1→2,[

a1

b1

]
= D1→2

[
a2

b2

]
, (8)

where

D1→2 =
1
2

[
1+ ηp + ξp 1− ηp − ξp

1− ηp + ξp 1+ ηp − ξp

]
, (9)

with the parameters ηp and ξp given by

ηp =
ε1k2z

ε2k1z
, ξp =

σk2z

ε0ε2ω
. (10)

For s polarization, the electric field is polarized along the
y direction. Similarly, by applying the boundary conditions
and Ohm’s law, the transmission matrix for s polarization that
relates the electric fields at the two sides of the interface can
be obtained, as

D1→2 =
1
2

[
1+ ηs + ξs 1− ηs + ξs

1− ηs − ξs 1+ ηs − ξs

]
, (11)

with the parameters ηs and ξs given by

ηs =
k2z

k1z
, ξs =

σµ0ω

k1z
, (12)

where µ0 is the vacuum permeability.
The transmission matrices for s and p polarizations across

an interface have similar forms except for the sign of ξ in the
off-diagonal elements. Introducing a polarization dependent
parameter ςm, the transmission matrices for both polarizations
can have an identical form,

D1→2,m =
1
2

[
1+ ηm + ξm 1− ηm − ςmξm

1− ηm + ςmξm 1+ ηm − ξm

]
, (13)

where m = (s, p) and ςp = 1 and ςs = −1.

2.2. Propagation matrix

We now consider the propagation of light in a homogeneous
medium. It can be shown [35] that the electric or magnetic

2
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fields at z + 1z can be related to those at the z position by a
2× 2 propagation matrix

P(1z) =

[
e−ikz1z 0

0 eikz1z

]
. (14)

2.3. Transfer matrix for multi-layer graphene

For the stack of N graphene layers shown in figure 1(b),
the transfer matrix can be obtained by transmission matrices
across different interfaces and propagation matrices in
different homogeneous dielectric media. Denote the field
coefficients on the left side of the leftmost graphene layer by
a1 and b1 and those on the right side of the rightmost graphene
layer by aN+1 and bN+1. The two sets of field coefficients are
then related by a 2× 2 transfer matrix M, namely[

a1

b1

]
= M

[
aN+1

bN+1

]
, (15)

with

M = D1→2P(d1,2)D2→3P(d2,3) · · ·P(dN−1,N)DN→N+1.

(16)

2.4. Scattering matrix

In certain cases, a better approach is to work with a scattering
matrix [38] rather than a transfer matrix. The transfer matrix
relates both the incoming and the outgoing waves on one side
of a structure to those on the other side of the structure. In
contrast, the scattering matrix S relates the outgoing waves
to the incoming waves, for the multi-layer graphene shown in
figure 1(b), given by[

b1

aN+1

]
= S

[
a1

bN+1

]
. (17)

From the transfer matrix, it is easy to obtain the scattering
matrix

S =
[

M21/M11 (M11M22 −M12M21) /M11

1/M11 −M12/M11

]
, (18)

where Mi,j (i, j = 1, 2) are the elements of M.

2.5. Optical spectrum calculations

With the transfer matrix, we can easily calculate the optical
spectra such as reflection, transmission and absorption for
multi-layer graphene. Suppose that light is incident from the
left upon the multi-layer graphene with the reflection and
transmission coefficients denoted respectively by r and t. It
can be shown that these coefficients are given by the elements
of M,

r =
M21

M11
, (19)

t =
1

M11
. (20)

The reflectance and transmittance can be calculated for both s
and p polarizations as

Rs,p = |rs,p|
2, (21)

Ts,p = ηs,p|ts,p|
2, (22)

where

ηs = k(N+1)z/k1z, ηp = ε1k(N+1)z/εN+1k1z. (23)

The absorbance can then be readily obtained from

A = 1− R− T. (24)

2.6. Optical conductivity of graphene

For illustration and simplicity, in this work we only consider
the situation where the absolute value of the chemical
potential of graphene µ is much larger than kT , where k
is the Boltzmann constant and T is the temperature. In this
situation, within the random-phase approximation the optical
conductivity of graphene σ(ω) is given by [19–21, 39–41]

σ(�)

ε0c
= 4α

i
�
+ πα

[
ϑ(�− 2)+

i
π

ln

∣∣∣∣�− 2
�+ 2

∣∣∣∣] . (25)

Here, � ≡ h̄ω/µ is the dimensionless frequency, α ≡
e2/4πε0h̄c (∼1/137) is the fine structure constant and ϑ(x)
is the Heaviside step function. The first and second terms
on the right-hand side stem from the intraband and interband
contributions, respectively.

3. Reflection, transmission and absorption

3.1. Single-layer graphene

For a single graphene layer surrounded by two dielectrics
with dielectric constants ε1 and ε2, suppose that light is
incident from the dielectric medium of ε1. The transfer
matrix is nothing other than the transmission matrix across
the interface, given by equations (9) and (11) for p and s
polarizations, respectively. From equations (21) and (22), the
reflectance and transmittance can be obtained as

Rs =

∣∣∣∣√ε1 cos θ1 −
√
ε2 cos θ2 − σ̃

√
ε1 cos θ1 +

√
ε2 cos θ2 + σ̃

∣∣∣∣2 , (26)

Rp =

∣∣∣∣√ε2/ cos θ2 −
√
ε1/ cos θ1 + σ̃

√
ε2/ cos θ2 +

√
ε1/ cos θ1 + σ̃

∣∣∣∣2 , (27)

Ts =
4
√
ε1ε2 cos θ1 cos θ2∣∣√ε1 cos θ1 +

√
ε2 cos θ2 + σ̃

∣∣2 , (28)

Tp =
4
√
ε1ε2/ (cos θ1 cos θ2)∣∣√ε2/ cos θ2 +

√
ε1/ cos θ1 + σ̃

∣∣2 , (29)

where θ1 and θ2 are the incident and refracted angles,
respectively, and σ̃ = σ/ε0c. By neglecting the higher-order
terms of σ̃ , the absorbance is given by

As =
4
√
ε1 cos θ1Re(̃σ )(√

ε1 cos θ1 +
√
ε2 cos θ2 + σ̃

)2 , (30)

3
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Figure 2. The reflectance, transmittance and absorbance of single-layer graphene as a function of the incident angle for � > 2. (a)
Reflectance and transmittance for s and p polarizations with ε1 = 1 and ε2 = 2.25. The dashed lines represent the situation in the absence of
the graphene layer. (b) Absorbance for (i) ε1 = ε2 = 1 and (ii) ε1 = 1 and ε2 = 2.25. (c) The same as (a) but for ε1 = 2.25 and ε2 = 1. The
corresponding absorbance is given in (d).

Ap =
4
√
ε1Re(̃σ )/ cos θ1(√

ε2/ cos θ2 +
√
ε1/ cos θ1 + σ̃

)2 . (31)

Obviously, for a single free-standing graphene layer under
normal incidence the absorbance for � > 2 is given by
πα/(1+ πα/2)2 ∼ πα.

In figure 2, the reflectance, transmittance and absorbance
at different incident angles for single graphene are shown.
Light is incident from the dielectric of ε1. The reflection
and transmission are altered somewhat with respect to the
case without the graphene layer. For ε1 ≤ ε2, the absorbance
decreases monotonically with increasing incident angle for
p polarization, while for s polarization it increases up to a
maximum and then decreases monotonically. For ε1 = ε2, the
absorbance for s polarization takes a universal value at normal
incidence, about πα, and the maximal absorbance is 0.5 at an
incident angle very close to π/2.

For ε1 > ε2, total internal reflection is expected. With the
presence of the graphene layer, there is nearly no change in the
critical angle. However, above the critical angle the reflectance
is no longer total (smaller than one). For s polarization,
the absorbance around the critical angle is several times
larger than the universal value of πα. This implies that the
configuration of total internal reflection could be exploited in
measurements of optical conductivity of graphene since it can
suppress the signal-to-noise ratio considerably.

3.2. Double-layer graphene

Consider two graphene layers which are separated by a
dielectric of ε2 with a thickness of d. The dielectric constant of

the leftmost dielectric is ε1 and that of the rightmost dielectric
is ε3. The transfer matrix of the structure can be obtained from
equation (16) as

M = D1→2P(d)D2→3, (32)

the elements of which are given by

Mµν,m =
cos k2zd

2
Aµν,m +

i sin k2zd

2
Bµν,m, (33)

whereµ = 1, 2 and ν = 1, 2. The parameters Aµν,m and Bµν,m
are given by

Aµν,m = 1+ (−1)µ+νηmη
′
m − (−1)ν

(
ξ ′m + ςmξmη

′
m

)
, (34)

Bµν,m = (−1)µηm + (−1)ν
(
η′m + ςmξmη

′
m

)
− (−1)µ+νηmξ

′
m − ςmξm, (35)

where

ηs = k2z/k1z, ηp = ε1k2z/ε2k1z,

ξs = σµ0ω/k1z, ξp = σk2z/ε0ε2ω,

η′s = k3z/k2z, η′p = ε2k3z/ε3k2z,

ξ ′s = σµ0ω/k2z, ξ ′p = σk3z/ε0ε3ω.

(36)

In figure 3, the reflectance, transmittance and absorbance
of double-layer graphene for ε1 = ε3 = 1 and ε2 = 2.25 are
shown. For small d, despite different values, the dependences
of the reflectance, transmittance and absorbance on the
incident angle are, in general, similar to those of single-layer
graphene. At normal incidence, the absorbance is nearly twice
the universal value of πα. For large d, however, there are
oscillations in the reflectance, transmittance and absorbance,
which originate from the thin-film interference.

4
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Figure 3. The reflectance, transmittance and absorbance of double-layer graphene as a function of the incident angle for � > 2. The two
graphene layers have the same optical conductivity. (a) Reflectance and transmittance for s and p polarizations with d = 0.1h̄c/µ
(corresponding to 0.132 µm for a typical chemical potential µ = 0.15 eV). The dashed lines represent the situation in the absence of the
graphene layers. The corresponding absorbance is given in (b). (c) The same as (a) but for d = 8h̄c/µ (corresponding to 10.5 µm for
µ = 0.15 eV). The corresponding absorbance is given in (d).

3.3. Multi-layer graphene

For multi-layer graphene, the transfer matrix can be obtained
from equation (16). The reflectance, transmittance and
absorbance can then be obtained from equations (21), (22) and
(24) respectively.

In figure 4, the reflectance and absorbance of multi-layer
graphene at normal incidence are shown. The structure
consists of identical graphene layers in air, separated equally
by a distance d. At low frequencies the reflectance is close
to one up to a certain cutoff frequency. Above the cutoff
frequency, for small d the reflectance oscillates and drops
rapidly to zero. For large d, however, there appear sharp
reflection peaks for frequencies above the cutoff frequency,
resulting from the multiple interference by the graphene
layers.

The structure has zero absorbance for � < 2 and shows
remarkable absorption for� > 2. For small d, the absorbance
is nearly a constant for � > 2. With increasing d, multiple
interference by the graphene layers may play an important
role, leading to sharp absorption dips. These interesting
properties imply that multi-layer graphene has potential as
a dark material to achieve lower reflection coatings and
enhanced photodetection [42].

3.4. Comparison with two-dimensional electron gas

In graphene, the electron band structure is characterized by
Dirac cones showing linear dispersion, different from that
in conventional two-dimensional electron gas (2DEG) with

Figure 4. The reflectance (solid line) and absorbance (dashed line)
spectra of 30 graphene layers at normal incidence. (a) d = 0.4h̄c/µ
and (b) d = 4h̄c/µ (corresponding to 0.132 and 5.26 µm for
µ = 0.15 eV, respectively).

parabolic dispersion. This difference will lead to different
polarizability and hence optical conductivity [43, 44]. In
2DEG, the optical conductivity has exactly the same form as
the intraband contribution in graphene (the first term on the
right-hand side of equation (25)), differing in the interband
contribution from graphene (the second term on the right-hand
side of equation (25)). As a result, the optical properties of
graphene may differ from those of 2DEG.

5
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Figure 5. Comparison of reflection and transmission spectra between graphene and 2DEG layers at normal incidence. (a), (b) Two
graphene and 2DEG layers with d = 0.1h̄c/µ and d = 3h̄c/µ, respectively. (c), (d) 40 graphene and 2DEG layers with d = 0.1h̄c/µ and
d = 3h̄c/µ, respectively.

In figure 5, a comparison of reflection and transmission
properties between graphene and 2DEG layers is shown.
For both systems, the layers of identical optical conductivity
are separated equally by a distance d. The results for
2DEG are also calculated within the same framework of the
developed transfer matrix method but with a different optical
conductivity. The reflection and transmission spectra between
graphene and 2DEG layers for both small and large d are very
similar in the frequency range � < 2. There is a difference
for � > 2. This is not surprising since for � > 2 interband
excitations are expected in graphene, which are absent in
2DEG. In many studies [30, 31], graphene is modelled by an
ultrathin metal with the optical conductivity of 2DEG. Our
results indicate that this analogy is reasonable and valid for
� < 2.

4. The photonic band structure of periodical
graphene layers

When dielectrics are arranged in a periodical way to form
so-called photonic crystals [45–47], electromagnetic waves
should be strongly modulated by Bragg scatterings, showing
photonic band structures with well-defined photonic bands
and even photonic bandgaps. For graphene layers stacked in
a periodical way, photonic band structures should also be
expected due to the introduced periodical modulations.

The first structure considered is shown schematically
in figure 6(a). It is composed of identical graphene layers
embedded into the interfaces of a one-dimensional photonic

crystal consisting of two dielectrics with dielectric constants
of ε1 and ε2 and thicknesses of d1 and d2, respectively. For
such a structure, the transfer matrix after propagating over one
unit cell reads

Mm = D1→2,mP(d2)D2→1,mP(d1). (37)

The photonic band structure can then be obtained from the
diagonal elements of the transfer matrix [36], cos(qd) =(
M11,m +M22,m

)
/2, where q is the Bloch wavevector and

d = d1 + d2 is the lattice constant. It can be explicitly written
as

cos(qd) = cos(k1zd1) cos(k2zd2)−
1
2 (ηm + η

−1
m )

× sin(k1zd1) sin(k2zd2)−1m, (38)

where

1m = iξm[(1+ η−1
m ) sin(k1zd1 + k2zd2)

+ ςm(1− η−1
m ) sin(k1zd1 − k2zd2)]

+
ξ2

m

2ηm
sin(k1zd1) sin(k2zd2). (39)

Without the term 1m, equation (38) reduces to the photonic
band structure of a one-dimensional photonic crystal [36].

For identical graphene layers separated equally by a
distance d in air, as shown in figure 6(b), the transfer matrix
simply reads Mm = DmP(d), where

Dm =

[
1+ ξm/2 −ςmξm/2

ςmξm/2 1− ξm/2

]
. (40)

6
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Figure 6. (a) Schematic of a structure consisting of identical graphene layers placed at the interfaces of a one-dimensional photonic crystal.
(b) Schematic of a structure consisting of identical graphene layers separated equally in air. (c) Photonic band structure (solid lines) for the
structure in (a). The parameters are ε1 = 1, ε2 = 2.25, d1 = 3h̄c/µ and d2 = 2h̄c/µ (corresponding to 2.63 and 3.95 µm for µ = 0.1 eV,
respectively). The dashed lines are the results in the absence of graphene layers. (d) The same as (c) but for the structure in (b). The
parameters are ε = 1 and d = 4h̄c/µ. The dashed lines are simply the folded dispersion in air, ω = qc.

The photonic band structure of the structure is then given by

cos(qd) = cos(kzd)−
iξm

2
sin(kzd), (41)

which is identical to that given in [48].
In figure 6, the photonic band structures of periodical

graphene layers are shown for the propagation direction
perpendicular to the graphene layers. For both structures
the first photonic band starts from a certain nonzero cutoff
frequency, different from conventional dielectric photonic
crystals. This cutoff frequency corresponds exactly to that
observed in the reflection spectra shown in figure 4. Below
the cutoff frequency, high reflection or low transmission is
expected, which was also observed in numerical simulations
of a stack of graphene layers separated by dielectric slabs [49].
It is known that in the low-frequency limit periodical metallic
structures can be considered as bulk metals with depressed
effective plasma frequencies [50, 51]. Thus, periodical
graphene layers can also be regarded as a bulk metal with an
extremely low effective plasma frequency.

For the structure shown in figure 6(a), the photonic
crystal in the absence of graphene layers displays well-defined
photonic bands and bandgaps. With the introduction of
graphene layers, however, both the photonic bands and the
bandgaps are modified. For example, for the photonic crystal
in the absence of graphene layers, there should be no bandgap
between the second and third photonic bands since this

photonic crystal is a quarter-wave stack. In the presence of
graphene layers, however, a mini photonic bandgap opens up.

For the second structure shown in figure 6(b), there
should be no photonic bandgaps in the absence of graphene
layers. In the presence of graphene layers, however, a
series of mini photonic bandgaps appears owing to the
multiple interference by the graphene layers. It is known that
for frequencies within photonic bandgaps light propagation
is forbidden [45–47]. For a structure consisting of finite
graphene layers, this will cause strong reflection for
frequencies located in the mini photonic bandgaps, as can be
clearly seen from figure 4(b).

5. Plasmons

A flat metal surface can support surface plasmons [26–28],
which are transverse magnetic (TM) electromagnetic waves
coupled with collective oscillations of surface charges.
Surface plasmons can propagate along the metal surface with
the fields decaying exponentially away from both sides of
the surface. In doped or gated graphene, free carriers can
also support plasmons [19–24]. Owing to its two-dimensional
nature and unique electronic band structure, graphene can
support not only TM but also transverse electric (TE)
plasmons [21]. The latter do not exist in conventional metal
surfaces.

7
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For a graphene layer surrounded by two dielectrics,
as shown in figure 1(a), the transfer matrix is simply
the transmission matrix. From equation (19), the reflection
coefficient of the system can be obtained. The condition for
the existence of plasmons is that the reflection coefficient has
poles, namely

1+ ηm + ςmξm = 0, (42)

where the subscript m stands for s and p polarization,
corresponding to the TE and TM modes, respectively.

From equation (42), the dispersion of TM plasmons can
be obtained as

ε1√
Q2 − ε1�2

+
ε2√

Q2 − ε2�2
= −

iσ(�)/ε0c

�
, (43)

with Q ≡ h̄cq/µ, where q(≡kx) is the wavevector of the
plasmons. Obviously, TM plasmons can exist if the imaginary
part of σ is positive. From the above equation, TM plasmons
are far below the light line, i.e., q � ω/c. Thus, in this
non-retarded regime, the dispersion of TM plasmons is
simplified to

Q = − (ε1 + ε2)�(ε0c)/iσ. (44)

For � > 2, σ has a real value as well, leading to a strong loss
due to interband excitations. For small q, the dispersion of TM
plasmons reduces to

� = 2
√

α

(ε1 + ε2)
Q, (45)

which shows the known
√

q-dependence [19, 20].
From equation (42), the dispersion of TE plasmons is

given by √
Q2 − ε1�2 +

√
Q2 − ε2�2 =

iσ
ε0c

�, (46)

which is the same as that given in [21]. TE plasmons can
exist if ε1 = ε2 and the imaginary part of σ is negative (for
� > 1.667). Note that the term on the right-hand side of
the above equation is very small in the frequency window
1.667 < � < 2. As a result, the dispersion of TE plasmons
should be below but very close to the light line ω = qc/

√
ε1.

We now consider a structure where a graphene layer is
separated from a dielectric substrate with ε2 by a distance d, as
shown schematically in the inset of figure 7. For this structure,
TE plasmons do not exist for finite d and thus we only discuss
TM plasmons. For p polarization, the transfer matrix of the
structure can be obtained from equation (16), namely

M = DP(d)D′, (47)

where

D = 1
2

[
1+ ηp + ξp 1− ηp − ξp

1− ηp + ξp 1+ ηp − ξp

]
, (48)

D′ = 1
2

[
1+ η′p 1− η′p
1− η′p 1+ η′p

]
, (49)

P =

[
e−ik1zd 0

0 eik1zd

]
, (50)

Figure 7. The dispersion of TM plasmons for the structure shown
in the inset, where the graphene layer is separated from a dielectric
substrate with ε2 = 10 by a distance d and the other dielectrics are
air with ε1 = 1. The blue, green and red lines are the results for
d̃ = 0.005, 0.01 and 0.1, respectively. The dotted line represents the
dispersion for a free-standing graphene layer in air and the dashed
line corresponds to the case d = 0.

with

ηp = 1, ξp = σk1z/ε0ε1ω,

η′p = ε1k2z/ε2k1z.
(51)

With the transfer matrix, it is easy to obtain the reflection
coefficient from equation (19). The condition for the existence
of plasmons thus reads(

1+ ηp + ξp
) (

1+ η′p
)

e−ik1zd

+
(
1− ηp − ξp

) (
1− η′p

)
eik1zd

= 0. (52)

Since the dispersion of graphene plasmons lies far below the
light line, the non-retarded condition q � ω/c still holds,
leading to η′p ' ε1/ε2 and ξp ' iσq/ε0ε1ω. Thus, the plasmon
dispersion can be simplified as

2ε1 (ε1 + ε2)

(ε1 + ε2)+ (ε1 − ε2) e−2Qd̃
= −

iσ
ε0c

Q

�
, (53)

where d̃ = dµ/h̄c.
In figure 7, the dispersion of TM plasmons for the

structure shown in the inset is given. The separation of
the graphene layer from the dielectric substrate with ε2
considerably affects the dispersion. For small q, the dispersion
is that for the case of d = 0. For large q, it approaches that
for the free-standing case. This dispersion interchange with
increasing q can be understood from the fact that the fields
of plasmons decay exponentially into the surrounding media,
as schematically depicted in the inset. For small q, the decay
length is much larger than d, such that the fields concentrate
dominantly in the substrate. As a result, the dispersion should
be that for the case d ∼ 0. For large q, the fields decay very
rapidly, such that the decay length is much smaller than d. In
this situation, the fields cannot sense the substrate dielectric
layer.

8
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Obviously, the dispersion interchange can be tuned by
d. The change from one kind of dispersion to the other
occurs faster for large d than for small d. Practically, we may
adopt this dispersion interchange to tune the dispersion of
TM plasmons or, in other words, the refractive index of the
plasmons. From equation (44), the corresponding refractive
index of TM plasmons for a graphene layer surrounded by
two dielectrics with ε1 and ε2 is given by

np ≡ qc/ω = −
ε1 + ε2

iσ/ε0c
. (54)

With the structure shown in the inset of figure 7, the refractive
index of TM plasmons can thus be tuned from−2ε1/ (iσ/ε0c)
to − (ε1 + ε2) / (iσ/ε0c). This offers a simple approach to
manipulate the dispersion of TM plasmons or the refractive
index practically by changing d [52].

6. Conclusions

In this paper, we developed a transfer matrix method for
optical calculations in non-interacting graphene layers. Within
the framework of this method, the transfer matrices for various
graphene layers can be obtained, from which the reflectance,
transmittance and absorbance spectra of graphene layers can
be easily obtained. In addition, photonic band structures for
periodical graphene layers and even graphene plasmons can
be studied in a rather simple way.

Using the transfer matrix method, we studied the optical
properties such as reflection, transmission and absorption for
single-, double- and multi-layer graphene. We showed that
the configuration of total internal reflection in single-layer
graphene and thin-film interference effects in double-layer
graphene could be exploited to enhance the light absorption.
For multi-layer graphene, there exists a cutoff frequency
below which the reflectance is as high as one. For a small
spacing distance, the absorption is very large for � > 2.
With increasing spacing distance, sharp reflection peaks and
absorption dips appear owing to the multiple interference by
the graphene layers.

We applied the transfer matrix method to structures
consisting of periodically arranged identical graphene layers.
The structures are characterized by photonic band structures
with well-defined photonic bands and bandgaps. We revealed
that these structures can be regarded as bulk metals with
extremely low effective plasma frequencies.

Finally, we discussed plasmons in a graphene layer that
is separated from a dielectric substrate. We found that the
plasmon dispersion can be tuned by the separation between
the graphene layer and the dielectric substrate. Our results
show that the transfer matrix method could serve as a versatile
tool to study optical properties in graphene layers.
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